C/EBPα regulates osteoclast lineage commitment.
نویسندگان
چکیده
Despite recent insights gained from the effects of targeted deletion of the Finkel-Biskis-Jinkins osteosarcoma oncogene (c-fos), Spleen focus-forming virus (SFFV) proviral integration 1 (PU.1), microphthalmia-associated transcription factor, NF-κB, and nuclear factor of activated cells cytoplasmic 1 (NFATc1) transcription factor genes, the mechanism underlying transcription factors specifying osteoclast (OC) lineage commitment from monocyte/macrophage remains unclear. To characterize the mechanism by which transcription factors regulate OC lineage commitment, we mapped the critical cis-regulatory element in the promoter of cathepsin K (Ctsk), which is expressed specifically in OCs, and found that CCAAT/enhancer binding protein α (C/EBPα) is the critical cis-regulatory element binding protein. Our results indicate that C/EBPα is highly expressed in pre- OCs and OCs. The combined presence of macrophage colony-stimulating factor and receptor activator of NF-κB ligand significantly induces high C/EBPα expression. Furthermore, C/EBPα(-/-) newborn mice exhibited impaired osteoclastogenesis, and a severe osteopetrotic phenotype, but unaffected monocyte/macrophage development. Impaired osteoclastogenesis of C/EBPα(-/-) mouse bone marrow cells can be rescued by c-fos overexpression. Ectopic expression of C/EBPα in mouse bone marrow cells and monocyte/macrophage cells, in the absence of receptor activator of NF-κB ligand, induces expression of receptor activator of NF-κB, c-fos, Nfatc1, and Ctsk, and it reprograms monocyte/macrophage cells to OC-like cells. Our results demonstrate that C/EBPα directly up-regulates c-fos expression. C/EBPα(+/-) mice exhibit an increase in bone density compared with C/EBPα(+/+) controls. These discoveries establish C/EBPα as the key transcriptional regulator of OC lineage commitment, providing a unique therapeutic target for diseases of excessive bone resorption, such as osteoporosis and arthritis.
منابع مشابه
The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro.
Osteoclast formation is dependent on the ability of TGF-beta to enable receptor activator of NF-kappaB ligand (RANKL)-induced commitment of hemopoietic precursors to the osteoclastic lineage. The mechanism by which TGF-beta enables formation is unknown. One possibility is that TGF-beta opposes Janus kinase (JAK)/STAT signals generated by inhibitory cytokines such as IFN-beta. The JAK/STAT pathw...
متن کاملLineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.
Hematopoiesis is tightly controlled by transcription regulatory networks, but how and when specific transcription factors control lineage commitment are still largely unknown. Within the hematopoietic stem cell (Lin(-)Sca-1(+)c-Kit(+)) compartment these lineage-specific transcription factors are expressed at low levels but are up-regulated with the process of lineage specification. CCAAT/enhanc...
متن کاملAcetylation of C/EBPα inhibits its granulopoietic function
CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid...
متن کاملMolecular Mechanisms of Gene Activation and Gene Expression mediated by CCAAT/Enhancer Binding Proteins
The transcription factor CCAAT/Enhancer-Binding Protein α (C/EBPα) coordinates proliferation arrest and differentiation of myeloid progenitors and adipocytes. C/EBPα acts as a transcriptional activator of lineage specific genes and blocks the cell cycle by repressing transcription of E2F-regulated genes. Data presented here suggest that also inversely E2F interferes with the transcriptional act...
متن کاملPhosphorylation of Serine 248 of C/EBPα Is Dispensable for Myelopoiesis but Its Disruption Leads to a Low Penetrant Myeloid Disorder with Long Latency
BACKGROUND Transcription factors play a key role in lineage commitment and differentiation of stem cells into distinct mature cells. In hematopoiesis, they regulate lineage-specific gene expression in a stage-specific manner through various physical and functional interactions with regulatory proteins that are simultanously recruited and activated to ensure timely gene expression. The transcrip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 18 شماره
صفحات -
تاریخ انتشار 2013